
The BEEST:
An Overview of ARPA-E’s Program in 

Ultra-High Energy Batteries for Electrified Vehicles

David Danielson, PhD

Program Director, ARPA-E

NDIA Workshop  to Catalyze Adoption of 

Next-Generation Energy Technologies

September 12, 2011



Advanced Research Projects Agency • Energy

Why do we care about the Electric Car?

OPPORTUNITY:

• Reduced Oil Imports

• Reduced Energy Related Emissions

• Lower & More Stable Fuel Cost 

(< $1.00/gallon of gasoline equivalent)

PROBLEM: 

Current Battery Technology 

Insufficient Energy Density/Range, Too Expensive
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Do batteries have the potential to rival the energy density of 

gasoline powered vehicles on a system level?

3

Energy Density (Wh/kg)



Advanced Research Projects Agency • Energy
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Do batteries have the potential to rival the energy density of 
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Do batteries have the potential to rival the energy density of 

gasoline powered vehicles on a system level?

8

Energy Density (Wh/kg)



Advanced Research Projects Agency • Energy 9

FACT: Batteries have the potential to rival the energy density 

of gasoline powered vehicles on a system level

Energy Density (Wh/kg)
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Widespread Adoption of EV’s Requires LONGER RANGE and 

COST Parity with Internal Combustion Engine Vehicles

COST: ICE Cost Benchmark ~ 24¢/mile

RANGE: 250+ mile range needed to eliminate “range anxiety”
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Widespread Adoption of EV’s Requires LONGER RANGE and 

COST Parity with Internal Combustion Engine Vehicles

COST: ICE Cost Benchmark ~ 24¢/mile

RANGE: 250+ mile range needed to eliminate “range anxiety”

Battery Pack Cost
($/kWh)

Discounted Vehicle Cost per Mile

600 (0.22) (0.27) (0.32) (0.37) (0.42) (0.47) (0.52)

500 (0.21) (0.25) (0.29) (0.34) (0.38) (0.42) (0.46)

400 (0.20) (0.24) (0.27) (0.30) (0.34) (0.37) (0.40)

300 (0.19) (0.22) (0.24) (0.27) (0.29) (0.32) (0.34)

250 (0.19) (0.21) (0.23) (0.25) (0.27) (0.29) (0.32)

200 (0.19) (0.20) (0.22) (0.24) (0.25) (0.27) (0.29)

150 (0.18) (0.19) (0.21) (0.22) (0.23) (0.24) (0.26)

Vehicle Range (mi) 50 100 150 200 250 300 350
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Widespread Adoption of EV’s Requires LONGER RANGE and 

COST Parity with Internal Combustion Engine Vehicles

COST: ICE Cost Benchmark ~ 24¢/mile

RANGE: 250+ mile range needed to eliminate “range anxiety”

Battery Pack Cost
($/kWh)

Discounted Vehicle Cost per Mile

600 (0.22) (0.27) (0.32) (0.37) (0.42) (0.47) (0.52)

500 (0.21) (0.25) (0.29) (0.34) (0.38) (0.42) (0.46)
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250 (0.19) (0.21) (0.23) (0.25) (0.27) (0.29) (0.32)
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Vehicle Range (mi) 50 100 150 200 250 300 350

Pack Energy (kWh) 12.5 25 37.5 50 62.5 75 87.5 

Pack Energy Density 
(Wh/kg)

42 83 125 167 208 250 292 

Now

Large EV Penetration
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ARPA-E BEEST Program Primary Goals:   $52.8M/3 years
“Batteries for Electrical Energy Storage in Transportation”
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System Energy

(Wh/kg)
System Cost

($/kWh)

100Current 750

System Energy

(Wh/L)

200

200+ <250300+

2x 3x1.5x
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RANGE COST
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ARPA-E BEEST Program: Secondary Technical Targets
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Target ID 

Number

Target Category Description

2.1 Specific Power Density 

(80% Depth of Discharge, 30s)

400 W/kg (system) 800 W/kg (cell)

2.2 Volumetric Power Density

(80% Depth of Discharge, 30s)

600 W/liter (system) 1200 W/liter (cell)

2.3 Cycle Life 1000 cycles at 80% Depth of Discharge (cell/system), 

with cycle life defined as number of cycles at which a 

>20% reduction in any energy/power density metric 

occurs relative to the initial values

2.4 Round Trip Efficiency 80% at C/3 charge and discharge

2.5 Temperature Tolerance -30 to 65C, with <20% relative degradation of energy 

density, power density, cycle life and round trip 

efficiency relative to 25C performance

2.6 Self Discharge <15%/month self-discharge (of initial specific energy 

density or volumetric energy density)

2.7 Safety Tolerant of abusive charging conditions and physical 

damage without catastrophic failure

2.8 Calendar Life 10 Years
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BEEST Portfolio: Advanced Chemistries & Manufacturing
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(Li Ion Mfg)

(Capacitive)

(Solid State Li)

(Li-Air)

(Zn-Air)
(Mg-Ion)

(Flow Batt)

(Li-S)

Upside

“Time to Market”

Advanced Lithium

Infrastructure Compatible

High Energy Materials

Ultra-High 

Energy

(Metal-Air)

(Si anode)

(Si anode)

System Targets:

200-400 Wh/kg

300-800 Wh/L

(Li-Air)

10 Advanced Prototyping Projects: $47.1M

4 Seedlings: $5.7M

TOTAL: $52.8M/3 years
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Envia Systems (Newark, CA): $4.0M/2 years
“400 Wh/kg Li-ion Battery” vs 220 Wh/kg state-of-the-art
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HCMRTM Cathode: 280 mAh/gm

Silicon-Carbon Composite Anode 
Capacity:

1200 mAh/g

Current Status:  

High energy cells in coin cell format  

exceeding over 100 cycles

• $17M follow-on led by GM Ventures

• GM agreement to use Envia cathode 

in next generation Chevy Volt
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Applied Materials (Santa Clara, CA): $4.4M/2.5 years
(Bringing the leading semiconductor equip company into battery manufacturing)
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State-of-the-Art NCA-Graphite

Battery System

$610/kWh  

Proposed NMC-Silicon

Battery System 

$248/kWh

 Platform manufacturing technology

 Dramatic reduction in factory footprint 

 50% reduction in factory cost; battery cost

 Advanced Li-ion materials

 High capacity cathode: porosity graded

 High capacity Si-based anode

 Integrated low cost separator
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Sion Power (Tucson, AZ): $5.0M/3 years

21

0 100 200 300 400 500 600

100

200

300

400

500

S
p

e
c
if

ic
 E

n
e
rg

y
 –

W
h

/k
g

0

NiCd

NiMH

Li Ion

Li-S

Li-S Dec. 2001

Li-S Today 

(UAV cells)

Energy Density – Wh/l

600

Demonstrated in Laboratory cells

Li
+ C

u
rr

e
n

t 
C

o
lle

c
to

r 
(A

l)

Li+ S8

Li2S8

Li2S6

Li2S4

Li2S3

Li2S2

Li2S

C
u

rr
e

n
t 
C

o
lle

c
to

r 
(C

u
, 

N
i,
 L

i)

Li
0

S
e

p
a

ra
to

r

Discharge (Li stripping)

Charge (Li plating)

Anode 

(-)

Cathode 

(+)

Load / 

Charger

Li

LiS

S

S

S

S

SS

S

Li

LiS

S

S

S

S

S

Li Li

S

S

S

Li

LiS

S

Li Li

S

Li Li

S

Li

LiS

S

Li

LiS

S

S

S

L
i

L
i

S

S
S

S
S

S Li Li

S

S

S

Li

LiS

S

S

S

S

S

Li

LiS

S

S

S

Polysulfide Shuttle

 

Li
+

Li
+

Li
+

Li
+

Li
+

Li
+

Li
+

Li
+

Li
+

Li
+

Li
+

Li
+

+-

Li: 3,860 mAh/g (vs 370 for graphite)
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PolyPlus Battery Company (Berkeley, CA): $5.0M/2 years
- The Holy Grail of Rechargeable Batteries -
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Protected 

lithium 

electrode

250 mAh Rechargeable Li-Air 

Prototype at end of year 2

Project Targets: 600 Wh/kg,1000 Wh/l, 1000 cycles

+ improved air 

electrode technology

PolyPlus/

Corning

Li:   3,860 mAh/g

O2: 1,675 - 3,350 mAh/g
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FastCAP Systems (Boston, MA):  $6.7M/2.5 Years

Fastcap supercapacitors will compete with 

today’s lithium ion batteries

Fastcap substrates are high-surface area, 

much more durable, and can hold more 

charge at higher voltages than SOTA. 

Batteries store energy 

using chemical reactions 

between an electrolyte and 

positive and negative 

electrodes

Capacitors store static 

electricity by building up 

opposite charges on two 

metal plates

Supercapacitors store 

more energy by utilizing a 

double layer of separated 

charges between two plates 

made of porous carbon 

materials.

Today’s supercapacitor carbon supports 

are low surface area, subject to 

degradation and self-discharge

Superconductors are faster cycling than 

batteries, but store less enegy


